The evolving role of the endocannabinoid system in gynaecological cancer

Thangesweran Ayakannu1, Anthony H. Taylor1,2,*, Jonathan M. Willets1, and Justin C. Konje1,3

1Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK; 2Biosciences, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG1 4BU, UK; 3Department of Obstetrics and Gynaecology, Sidra Medical and Research Centre, Doha P.O. Box 26999, Qatar

*Correspondence address. E-mail: superdoc.at@gmail.com

Submitted on October 31, 2014; resubmitted on March 1, 2015; accepted on April 9, 2015

TABLE OF CONTENTS

- Introduction
 - Gynaecological cancer
 - The endocannabinoid system
- Methods
- Results
 - Endocannabinoids and cancer
 - The endocannabinoid system and gynaecological cancer
- Conclusion

BACKGROUND: The ‘endocannabinoid system’ (ECS), comprising endogenous ligands (endocannabinoids) and their regulating enzymes, together with the cannabinoid receptors, has attracted a great deal of attention because it affects not only all facets of human reproduction, from gametogenesis through to parturition and beyond, but also targets key mechanisms affecting some hallmarks of cancer. Recent evidence showing that cannabinoid receptors play a very important role in the development of malignancies outside of the reproductive organs suggests a similar role for the ECS in the establishment or continued development of gynaecological malignancy.

METHODS: Primary papers and review articles, and primary sources within these papers, up to December 2014, on the evolving role of the ECS in cancer, with a special focus on gynaecological cancers, were obtained by Medline and PubMed searches using the search terms: ‘cancer’, ‘cannabinoid’, ‘endocannabinoid’, ‘gynaecology’ and ‘malignancy’. Non-English manuscripts were excluded.

RESULTS: More than 2100 sources were obtained from which only 112 were specifically important to the topic. Analysis of those articles supports a role of the ECS in gynaecological cancers but leaves many gaps in our knowledge that need to be filled. How some of the relevant receptors are activated and cause changes in cell phenotypes that progress to malignancy remains undiscovered and an area for future research. Increasing evidence suggests that malignant transformation within the female genital tract could be accompanied by deregulation of components of the ECS, acting through rather complex cannabinoid receptor-dependent and receptor-independent mechanisms.

CONCLUSIONS: The paucity of studies in this area suggests that research using animal models is needed to evaluate endocannabinoid signalling in cancer networks. Future randomized clinical studies should reveal whether endocannabinoids or their derivatives prove to be useful therapeutic targets for gynaecological and other cancers.

Key words: endocannabinoid / cancer / endometrium / cervix / ovary
Introduction

The endocannabinoid system (ECS), which is comprised of ligands, the enzymes responsible for their synthesis and degradation, and their specific G-protein-coupled receptors (GPCRs) (e.g. CB1 and CB2), has been the focus of intense research over the past decade, especially in the field of human reproduction (Fig. 1; see also Habayeb et al., 2004; Taylor et al., 2007; Maccarrone, 2009; Taylor et al., 2010; Karasu et al., 2011; Melford et al., 2014). Its prototype, endogenous ligand N-arachidonylethanolamide (anandamide; AEA), acts mainly on receptors to which the active component of marijuana (Cannabis sativa), Δ-9-tetrahydrocannabinol (Δ-9-THC) also binds (Pertwee et al., 2010). The fact that many of the actions attributed to endocannabinoids are involved in physiological and pathological conditions, in particular cancer (Table I: Guindon and Hohmann, 2011; Sailler et al., 2014; Thu et al., 2014), suggests that gynaecological malignancies may also be affected by perturbations in the ECS.

Gynaecological cancer

Cancers of the female reproductive system, which make up approximately one out of six cancers in women (Sankaranarayanan and Ferlay, 2006), are a diverse group of malignancies with different epidemiological and pathological features, clinical presentations and treatment modalities. Gynaecological cancers remain an important cause of morbidity and mortality in the United Kingdom (UK) with the 2014 Cancer Research UK statistics website showing that uterine and ovarian cancers were in the top 10 most commonly diagnosed female malignancies (Cancer Research UK, 2014). Approximately 8500 and 7100 new cases of uterine and ovarian cancers, respectively, were diagnosed in 2011 (Cancer Research UK, 2014). In 2012, there were 2000 deaths from uterine and 4300 deaths from ovarian cancers (Cancer Research UK, 2014). After uterine and ovarian cancers, cervical cancer is the third most common gynaecological cancer with 3100 new cases in 2011 and 920 women deaths from cervical cancer in 2012 in the UK (Cancer Research UK, 2014). While significant progress has been made in reducing the incidence of some cancers, the same cannot be said of other genital tract cancers. This may partly be due to the lack of a thorough understanding of their pathogenesis.

Cancers, including those of gynaecological origin, are marked by deregulation of critical cellular mechanisms including cell division, differentiation and death. Various compounds or factors thought to be involved in these processes may thus be critical in the development of cancer.

Figure 1

Location of various components of the ECS in human female reproductive organs.
Table I Main signalling pathways affected by the ECS in carcinogenesis.

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Ligand</th>
<th>Classification</th>
<th>Effect and putative pathway (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer type</td>
<td>Ligand</td>
<td>Classification</td>
<td>Effect and putative pathway (reference)</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Lung</td>
<td>Anandamide</td>
<td>Endocannabinoid</td>
<td>Anti-tumorigenic effects (cell cycle arrest and apoptosis)—FAAH inhibition augments AEA mediated effects by down-regulating the EGF/EGFR pathway in non-small cell lung cancer Ravi et al. (2014). Inhibition of tumour progression and Akt phosphorylation Preet et al. (2011).</td>
</tr>
<tr>
<td>JWH-015</td>
<td>Aminoalkylindoles</td>
<td>Inhibition of chemotaxis, chemo-invasion, tumour growth and lung metastasis through inhibition of Akt, matrix MMP-9 Preet et al. (2011).</td>
<td></td>
</tr>
<tr>
<td>WIN55,212-2</td>
<td>Aminoalkylindole (synthetic)</td>
<td>Inhibition of Akt and MMP-9 results in inhibition tumour growth and progression Preet et al. (2011).</td>
<td></td>
</tr>
<tr>
<td>2-AG</td>
<td>Endocannabinoid</td>
<td>Apoptosis—TRPV2-dependent Ca^{2+} influx Nabissi et al. (2013).</td>
<td></td>
</tr>
<tr>
<td>CBD</td>
<td>Phytocannabinoid</td>
<td>Inhibition of angiogenesis through MMP-2 and ID-1 Freimuth et al. (2010), Soroeceanu et al. (2013).</td>
<td></td>
</tr>
</tbody>
</table>
physiological effects through activation of CB1 (Zimmer et al., 1999).

The main active ingredient of cannabis, Δ9-THC, produces its pathophysiological effects through activation of CB1 (Zimmer et al., 1999) and CB2 receptors (Buckley et al., 2000). The phytocannabinoids consist of a group of fat-soluble molecules of which Δ9-THC, cannabidiol (CBD) and cannabiol (CBN) are the most prevalent (Russo, 2011). Δ9-THC, at submicromolar concentration, binds to CB1 and CB2 with similar affinities. In the brain, it behaves mainly as a CB1 receptor agonist, whilst acting as a tissue-specific CB1/CB2 receptor antagonist. It has been suggested that it acts by preventing the normal action of the prevailing endogenous cannabinoid, i.e. endocannabinoid (Paronis et al., 2012). Endocannabinoids, in addition to acting via these receptors, also exert their effects through the activation of putative cannabinoid receptors, such as the transient potential vanilloid receptor 1 (TRPV1) and the orphan GPCRs GPR55, GPR119 (Pertwee, 2009) and GPR18 (Qin et al., 2011). Endocannabinoids, which are endogenous lipids, mimic the effects of Δ9-THC on these receptors and are involved in various processes essential to the establishment and maintenance of human health (Pertwee, 2009; Bosier et al., 2010; Pertwee et al., 2010; Fonseca et al., 2013). The ECS is widely distributed throughout the body and is found in the brain, the gastrointestinal tract, connective tissues, the reproductive system and the immune system (Maccarrone et al., 2002; Marczylo et al., 2010).

Cannabinoid and non-cannabinoid receptors

The cannabinoid receptors (CB1, CB2) belong to the Gi/o family of seven trans-membrane GPCRs. CB1, the central receptor, was first described as predominantly expressed in the central nervous system, while CB2 was first isolated from splenic cells. Pharmacological studies have indicated the existence of other cannabinoid receptor subtypes (Mackie and Stella, 2006), and recently two orphan GPCRs, GPR55 and GPR119, have been characterized as cannabinoid receptors (Godlewski et al., 2009; Okuno and Yokomizo, 2011). GPR55 has been identified in the brain and peripheral tissues, such as the gut, spleen, adrenals and the reproductive tract, and two endocannabinoid ligands, 2-arachidonoylglycerol (2-AG) and N-palmitoylethanolamine (PEA), seem to have the greatest affinity for this receptor. In a recent study, it was reported that 2-arachidononyl lysocephatidyl-inositol may also be a ligand for GPR55 (Okuno and Yokomizo, 2011). GPR55 is found in skin, and it drives skin carcinogenesis, with its expression significantly increased in human squamous cell cancers (Perez-Gomez et al., 2013). GPR119, on which N-oleylethanolamide (OEA) has the greatest affinity, has a more limited tissue distribution, being predominantly expressed in the pancreas and intestinal tissues (Godlewski et al., 2009), whilst the transient receptor potential vanilloid subtype 1 (TRPV1), a ligand-gated, Ca2+ permeable ion channel (thought to be involved in the ion-mediated action of cannabinoids), has an almost ubiquitous distribution (Huang et al., 2002). N-Arachidonoylethanolamide, i.e. anandamide (AEA), and N-arachidonoyl dopamine (NADA) bind to this receptor and have therefore been considered part of a group of ligands known as endovanilloids that act on the endovanilloid receptor, TRPV1 (Huang et al., 2002). Lately, the peroxisome proliferator-
activated receptors (PPARs) have also been added to the list of potential endocannabinoid receptors. PPARs have been shown to be stimulated by endocannabinoids under both physiological and pathological conditions and of interest is the fact that they have a higher affinity for OEA and PEA than other endocannabinoids (Pistis and Melis, 2010). Furthermore, recent studies have suggested that another orphan G-protein receptor, GPR18, plays a vital role in tumourigenesis and metastasis of human cancer. Although GPR18 also binds endocannabinoids, it is constitutively active and inhibits apoptosis in metastatic melanoma, suggesting that activated GPR18 plays a vital role in tumour cell survival (Qin et al., 2011). Whether this receptor is present in gynaecological cancers remains unknown. N-Arachidonoyl glycine (NAGly), an endogenous metabolite of AEA, has in fact been reported to be a GPR18 ligand (Kohno et al., 2006), perhaps through pre-activation by AEA, which is a precursor of NAGly and produced by either oxidation by cytochrome c (McCue et al., 2008) or by alcohol dehydrogenase (Bradshaw et al., 2006).

Synthesis and degradation of endocannabinoids

The synthesis and degradation pathways are known for the two most widely studied endocannabinoids, AEA (anandamide) (Devane et al., 1992) and 2-AG (Mechoulam et al., 1995). Endocannabinoids are generally thought to be synthesized on demand from phospholipid precursors residing in the cell membrane, through the catalytic activities of a variety of intracellular enzymes, the activation of which normally occurs in response to a rise in intracellular calcium levels (Matias and Di Marzo, 2006).

AEA was the first endogenous ligand identified and remains the most frequently investigated endocannabinoid (Devane et al., 1992). It is produced rapidly by the hydrolysis of N-arachidonoyl phosphatidylethanolamine (NAPE) by a specific phospholipase D (NAPE-PLD) (Matias and Di Marzo, 2006). 2-AG, on the other hand, is synthesized through the activation of phospholipase C and the subsequent production of diacylglycerol, which is then converted to 2-AG by diacylglycerol lipase (DAGL) (Matias and Di Marzo, 2006). Upon release, AEA and 2-AG activate molecular targets and are then subsequently inactivated following cellular re-uptake (McFarland and Barker, 2004). Diverse transport systems have been proposed for AEA, including endocytosis, passive and active diffusions and a specific carrier protein (McFarland and Barker, 2004). Once inside the cell, AEA is degraded into arachidonic acid (AA) and ethanolamine by the enzyme fatty acid amide hydrolase (FAAH), while 2-AG is degraded mainly, but not exclusively, by monoacyl-glycerol lipase (MAGL) into AA and glycerol (Matias and Di Marzo, 2006).

Methods

Primary papers and review articles, up to December 2014, on the evolving role of the ECS in cancer as a whole, with a special focus on gynaecological cancers, were obtained by Medline and PubMed searches using the search terms: ‘cancer’, ‘cannabinoid’, ‘endocannabinoid’, ‘gynaecology’ and ‘malignancy’. Non-English manuscripts were excluded. Furthermore, reference lists of the retrieved articles were examined for further evaluative sources.

Results

Endocannabinoids and cancer

The ECS has been implicated in a wide range of physiological and pathological conditions, such as obesity or metabolic syndrome (Merroun et al., 2013), intractable cancer-related pain (Johnson et al., 2010; Gu et al., 2011), reduced inflammation (Burstein et al., 2011), such as that observed in inflammatory bowel disease (De Petrocellis et al., 2012; Borrelli et al., 2013; Liu et al., 2013), immunomodulation (Disis, 2010), and has neurological effects in attenuated catalepsy (Gomes et al., 2013) and Alzheimer’s disease (Hill et al., 2012; Aso et al., 2013; Deiana, 2013; Shinjo and Di Marzo, 2013) as well as other neurophysiological effects (Parolaro et al., 2002; Walker and Huang, 2002). It has been shown to have potential therapeutic effects in the alleviation of symptoms, such as chemotherapy-induced neuropathic pain and bone cancer pain, via increased levels of 2-AG (Khasanova et al., 2011; Lozano-Ondoua et al., 2013), appetite loss, and nausea and vomiting. For example, 2AG stimulation and MAGL inhibition attenuate nausea and vomiting in rodent models (Sticht et al., 2012; Todaro, 2012) and in cancer patients (Hall et al., 2005). In addition, the ECS plays a vital role in the regulation of metabolism in several peripheral tissues (Ruminska and Dobrzyn, 2012). Furthermore, these lipids are increasingly being shown to play a role in cancer stem cells (CSC) (Takahura, 2012), to have a close relationship with lipid mediators in cancer (Santos and Schulze, 2012), and to be involved in the regulation of key processes in the development of cancer (Pisanti et al., 2009; Hanahan and Weinberg, 2011; Velasco et al., 2012; Pisanti et al., 2013; Van Dross et al., 2013), particularly sex steroid hormone-dependent cancers (Ayakannu et al., 2013b; Meccariello et al., 2014). These exciting initial observations make a strong case for more research to substantiate these anti-neoplastic effects in humans (Malfitano et al., 2011; Fowler, 2012; Velasco et al., 2012; Massi et al., 2013). The main pathways that have been demonstrated for the involvement of the ECS in carcinogenesis are summarized in Table I.

Cell cycle regulation and endocannabinoids

AEA has been shown to arrest human MDA-MB-231 breast cancer cells in the S phase of the cell cycle primarily because of a loss in Cdk2 activity, up-regulation of p21waf and a reduced formation of the active complex cyclin E/Cdk2 kinase (Laezza et al., 2006). In addition, AEA arrests cells in the S phase through Chk1 activation and Cdc25A protein dephosphorylation, which prevents Cdk2 activation by dephosphorylation on critical inhibitory residues (Thr14/Tyr15) (Laezza et al., 2006). In a CB2 receptor-dependent mechanism, Δ9-THC inhibits breast cancer cell proliferation by blocking the cell cycle at the G2/M phase through the down-regulation of Cdc2; however, CB2-selective antagonists significantly but not totally prevent such effects, suggesting that a CB2-receptor-independent mechanism is also present (Caffarel et al., 2006). Prostate cancer (LNCaP) cells, when treated with the CB1 agonist WIN55,212-2, arrest cell division at the G0/G1 phase of the cycle, with this arrest being sustained by the activation of ERK1/2, induction of p27kip1 and inhibition of cyclin D (Sarfraz et al., 2006). The arrest at G0/G1 can result in stimulation of apoptosis via a change in the Bax/Bcl-2 ratio and the activation of caspases (Sarfraz et al., 2006). Importantly, WIN55,212-2 treatment of LNCaP cells results in a dose-dependent decrease in the expression of cyclins D1, D2 and E, as well as cdk2, cdk4 and cdk6, phosphorylated retinoblastoma protein and its molecular partner, the transcriptional factor E2F (Sarfraz et al., 2006). WIN55,212-2 also causes a dose-dependent decrease in the expression of the transcription factors DP-1 and DP-2, leading to a decrease in the formation of the heterodimeric complex with E2F, which is essential for its activity (Sarfraz et al., 2006). In glioblastoma multiforme cells, Δ9-THC elicits a G0/G1 cell cycle via suppression of E2F1 and cyclin A and also through the up-regulation of the cell cycle inhibitor p16 (INK4A) (Galanti et al., 2008).
Inhibition of cancer cell proliferation by endocannabinoids

The proliferation of various cancer cells can be inhibited by many different mechanisms, such as a decrease in the expression and/or activity of nerve growth factor, prolactin or vascular endothelial growth factor (VEGF) tyrosine kinase receptors (De Petrocellis et al., 1998; Melck et al., 2000; Portella et al., 2003), a decrease in epidermal growth factor receptor (EGFR) expression and/or attenuation of EGFR tyrosine kinase activity (Mimeault et al., 2003), cell cycle blockade with induction of the cyclin-dependent kinase inhibitor p27/Kip1 (Portella et al., 2003) or the inhibition of adenylate cyclase activity and the cAMP/protein kinase A pathway (Melck et al., 1999). Breast cancer cell proliferation is inhibited by AEA via down-regulation of the prolactin receptor, BRCA 1 gene product and the high-affinity neurotrophin receptor trk A (Melck et al., 1999; Melck et al., 2000; Caffarel et al., 2012). The anti-proliferative effect of AEA is proportional to the hormone dependency of the cell lines, and the mechanism relies on the inhibition of the phos- phokinase A (PKA) pathway (Melck et al., 2000). In addition, synthetic cannabinoids such as JWH-018, JWH-073, JWH-122 and JWH-210 containing a naphthoylindole ring show anti-estrogenic properties in the MCF-7 breast cancer cell (Koller et al., 2013). Furthermore, WIN55,212-2 and JWH-133 also cause inhibition of breast cancer cell proliferation (MDA-MB-231) by causing cell cycle arrest at G1 to S phase and induction of apoptosis (Qamri et al., 2009). Interestingly, a novel synthetic hexahydrocannabinol analogue (LYR-7 and LYR-8) acts as an anti-proliferative and anti-angiogenesis agent and has also been suggested to cause a reduction in tumour growth by targeting the VEGF-mediated angiogenesis signalling pathways in both tamoxifen-sensitive and tamoxifen-resistant MCF-7 breast cancer cell lines (Thapa et al., 2011).

A number of intraepithelial or invasive prostate cancers exhibit evidence of increased expression of EGFR, EGF and transforming growth factor α (TGF α) (Mimeault et al., 2003). Micromolar concentrations of AEA inhibit the EGF-induced proliferation of PC3, DU145 and LnCaP prostate cancer cells through G1 arrest and down-regulation of EGFR expression. These effects are mediated via CB1 receptors (Mimeault et al., 2003). In addition, omega-3 ethanolamides show evidence of anti-proliferative effects through cannabinoid receptor-dependent pathways in androgen receptor-positive prostate cancer cell lines (Brown et al., 2010; Brown et al., 2013). Furthermore, treatment of LnCaP cells with the CB1 agonist WIN55,212-2 decreases cell proliferation, androgen receptor expression, VEGF protein expression and prostate-specific antigen (PSA) secretion (Sarfaraz et al., 2005). Moreover, the putative cannabinoid receptor GPR55 is also expressed in prostate cancer cell lines, such as PC3 and DU-145 cells, and this putative cannabinoid receptor has been suggested to define an autocrine loop in prostate cancer cell proliferation that is unique to malignant prostate cells (Pneiro et al., 2011). As more research is undertaken, the role of this orphan receptor in preventative oncogenesis is becoming more important (Andradas et al., 2011). For example, activation of GPR55 receptors in cholangiocarcinoma by AEA results in an anti-proliferative effect (Huang et al., 2011). Furthermore, the demonstration of an anti-proliferative effect in BV-2 microglial and HEK 293 cells via the GPR18 receptor, when activated by NA Gly, which results in p44/42 MAPK pathway activation (McHugh et al., 2010), suggests that multiple endocannabinoid signalling pathways converge to attenuate malignant cell growth (Bradshaw et al., 2009).

Induction of apoptosis by endocannabinoids

BAD, a pro-apoptotic member of the Bcl-2 family of signalling molecules, is hypothesized to play a role in endocannabinoid-dependent apoptosis (Ellert-Miklaszewksa et al., 2005). Increasingly, the endocannabinoids together with ceramide have been shown to play a vital role in cancer cell signalling (Morad and Cabot, 2013). The pro-apoptotic effects may also depend on CB1-independent stimulation of sphingomyelin breakdown (Sanchez et al., 1998). In leukaemia and lymphoma cell lines, de-polarization of mitochondria via cytochrome c release is a common event in endocannabinoid-induced apoptosis (Jia et al., 2006). These effects may be caused by CB agonists such as WIN55,212-2, which induces cytoplasmic vacuolation in apoptosis-resistant mantle cell lymphoma (MCL) cells (Wasik et al., 2011a) and Δ9-THC, which induces CB-dependent apoptosis via ceramide accumulation and caspase stimulation through the p38MAPK signalling pathway, down-regulation of the RAF1/MAPK pathway and translocation of BAD to mitochondria (Jia et al., 2006). Moreover, CB1 and CB2 receptors are also expressed at a high concentration in MCL and B cell non-Hodgkin lymphoma, when compared with non-malignant states, whilst Δ9-THC causes increased apoptosis in EL4 and MCL cells when cultured in vitro (Flygare et al., 2005; Wasik et al., 2011b). CB agonists are mitochondrial inhibitors, since they decrease the oxygen consumption and mitochondrial membrane potential while increasing mitochondrial hydrogen peroxide production, thus inducing apoptosis (Athanasiou et al., 2007). The anti-cancer actions of the endocannabinoids on glioma cells have been reported to be exerted either through the CB1 or the CB2 receptor (Lorentz et al., 2011a, b). THC induces apoptosis of C6 glioma cells via a network involving the CB1 receptor, sustained generation of the pro-apoptotic lipid ceramide and prolonged activation of the Raf1 /MEK/ERK cascade (Galve-Roperh et al., 2000). THC treatment has been documented to induce apoptosis through CB1 inhibition of the RAS-MAPK/ERK and PI3K-Akt survival signalling cascade and stimulation of the BCL-2 family member BAD-mediated apoptosis pathway in colorectal cancer (Greenough et al., 2007). In addition, MAGL knock-down inhibits progression of tumour cell growth in colorectal cancer (Ye et al., 2011). Furthermore, Δ9-THC induces apoptosis in oral squamous cell carcinoma (Lopes et al., 2012). CB receptor agonist-induced colon cancer cell death is via TNFα-stimulated ceramide synthesis; therefore, TNFα may act as a link between endocannabinoid receptor activation and ceramide production (Cianchi et al., 2008). It has been shown that prolonged AEA incubation (5–6 days) induces massive apoptosis in DU145 and PC3 prostate cancer cells, and this is also mediated through CB1/2 via cellular ceramide accumulation, but noted to be absent in LnCaP cells (Mimeault et al., 2003). In addition, fluorinated methanandamide (MET-F-AEA), a metabolically stable analogue of anandamide, inhibits human thyroid cell line growth through apoptosis (Cozzolino et al., 2010).

The endocannabinoid system and cancer cell invasion

Cancer cell invasion is an important step in tumour growth and metastasis that defines the aggressiveness, degree of malignancy and disease outcome. Several studies have evaluated the effects of endocannabinoids on cancer cell invasion and the signalling pathways involved in the inhibition of invasion (Hermanson and Maret, 2011), such as that of the TIMP-1 endogenous tissue inhibitor of metalloproteinase (TIMP) (Ramer and Hinz, 2008), inhibition of FAK/Src signalling (Grimaldi
Matrix (ECM) components, which are important in cancer angiogenesis, are degraded by MMPs. MMPs play a key role in their anti-invasive action. MMP-2 and MMP-9 promote cancer invasion by proteolytic degradation of major basement membrane components, such as laminin, collagen and nidogens (Currand and Murray, 2000). An important action of MMPs is the degradation of the extracellular matrix (ECM) components, which are important in cancer angiogenesis, invasion and metastasis (Stamenkovic, 2000). MMP proteolytic activity is inhibited by the TIMPs. In lung cancer cells, inhibition of invasion by AEA and ∆9-THC depends on the induction of TIMP-1 expression (Ramer and Hinz, 2008). In addition, cannabinoid treatment of glioma cell lines and primary tumour cells from glioblastoma multiforme inhibits the expression of TIMP-1 (Blazquez et al., 2008a). Furthermore, ∆9-THC inhibits MMP-2 expression and cell invasion in glioma cells (Blazquez et al., 2008b). Down-regulation of MMP-2 plays a vital role in ∆9-THC-mediated inhibition of cancer cell invasion (Blazquez et al., 2008b). In addition, monoacyl-glycerols (MAGs), such as 2-AG, are metabolized to free fatty acids (FFAs) and glycerol by MAGL, which are elevated in aggressive prostate cancer, whilst anti-survival MAGs are down-regulated in aggressive prostate cancer when compared with that of non-aggressive tumours and thus MAGL exerts dual control over endocannabinoids and fatty acid pathways in prostate cancer (Nomura et al., 2011). In contrast, FAAH expression in prostate cancer is associated with disease severity and outcome and CB1 receptor expression, and this is regulated by IL-4 (Thors et al., 2010). Whether this also occurs in gynaecological cancers remains unknown. Studies in androgen-independent prostate cancer cell lines (PC3 and DU145) show that endogenous 2-AG and CB1 agonists reduce invasion through the CB1-dependent inhibition of adenylyl cyclase and the subsequent decreased PKA activity (Nithipatikom et al., 2004).

Inhibition of cancer angiogenesis by endocannabinoids

Since angiogenesis has been shown to be closely linked with cancer development, and implicated in metastasis, the development of a cancer-specific anti-angiogenesis therapy has been proposed to be possibly more effective than current regimens (Cao et al., 2013). In this respect, endocannabinoids might be potential new therapeutics, because they are thought to inhibit tumour growth by reducing the vascular concentration in the tumour, decreasing the production of pro-angiogenic factors and/or by directly modulating endothelial cells (Freimuth et al., 2010). The pro-angiogenic growth factor VEGF and its receptor VEGF-R1 are major cancer cell-released chemo-attractants in angiogenesis, and several studies have reported that endocannabinoids can modulate the expression of VEGF and VEGF-R1 (Saia et al., 2007). Indeed, endocannabinoids inhibit angiogenesis in thyroid cancer by decreasing the levels of VEGF and VEGF-R1 (Portella et al., 2003). In addition, intra-tumoural administration of ∆9-THC to glioblastoma patients decreases both VEGF and VEGF-R2 expression (Blazquez et al., 2004). Endocannabinoid treatment of glioma inhibits the expression of VEGF, angiopeitoin-2, MMP-2 and hypoxia-inducible factor 1-α (HIF-1α), which is the major factor responsible for VEGF expression (Blazquez et al., 2004). The anti-angiogenic activity of AEA has also been reported in capillary-like tube formation and morphogenesis assays, and it acts via inhibition of basic fibroblast growth factor (bFGF)-induced chemotaxis and MMP-2 degrading activity (Pisanti et al., 2007). HU-331, a derivative of CBD, is an anti-carcinogenic drug that acts as an anti-angiogenic factor via a different mechanism, whereby it directly induces apoptosis of vascular endothelial cells without modulating the expression of pro- and anti-angiogenic factors and their receptors (Kogan et al., 2006). In addition, cannabinoids that activate CB1 and/or CB2 receptors, including ∆9-THC, JWH-133, HU-210 and WIN55,212-2, have been reported to inhibit vascular endothelial cell migration and survival as part of their direct anti-angiogenic mechanism of action (Blazquez et al., 2003). In contrast, the genetic and pharmacological interventions that inactivate CB1 receptors may result in inhibition of angiogenesis (Pisanti et al., 2011). The metabolically stable AEA-derivative met-fluoro-AEA suppresses angiogenesis in an in vivo chick chorioallantoic membrane assay, inhibits capillary-like tube formation in vitro and reduces the sprout number and length of endothelial cell spheroids (Pisanti et al., 2007).

Effects of the endocannabinoid system on cancer cell adhesion

Matrix proteins, such as cell adhesion molecules of the immunoglobulin superfamily (IgSF CAMs), integrins, selectins and cadherins, are integral to the adhesive property of cells to the ECM. Changes to the adhesive properties of cancer cells and their interactions with the surrounding microstructures play a vital role in cancer growth, invasion, migration and metastases. Studies of endocannabinoids have reported that they have various effects on the adhesion of cancer cells to the ECM. AEA inhibits the adhesion of the highly invasive MDA-MB-231 and TSA-E1 metastatic breast cancer cell lines on type IV collagen, the major component of the basement membrane (Grimaldi et al., 2006) and of SW480 colon cancer cells via the stimulation of endocannabinoid receptors (CB1) (Joseph et al., 2004). AEA has no effect on adhesion of these cancer cells to fibronectin and laminin (Grimaldi et al., 2006) but decreases the affinity of integrins to collagen via the suppression of the pro-oncogenic tyrosine kinase c-Src and by the phosphorylation of the focal adhesion kinase (FAK) (Grimaldi et al., 2006).

Effects of the endocannabinoid system on cancer cell migration

The ECS has been shown to be involved in the direct regulation of cancer cell migration. In the scratch wound healing assay, cancer-cell migration is reduced by 2-AG and WIN55,212-2 in a CB1 receptor-dependent manner (Grimaldi et al., 2006). Migration of the highly invasive metastatic breast cancer cell lines MDA-MB-231 and TSA-E1 (when grown on type IV collagen) is inhibited by AEA (Grimaldi et al., 2006). In SW480 colon carcinoma cells, AEA inhibits cell migration via activation of CB1 receptors (Joseph et al., 2004). Inhibition of migration of lung cancer cells has been reported for both AEA and ∆9-THC (Ramer and Hinz, 2008), while migration of human glioma cells is inhibited by CBD via a receptor-independent method (Vaccani et al., 2005). The epidermal growth factor (EGF) and its EGRF (Preet et al., 2008), neurotransmitters (Joseph et al., 2004), mast cells (Rudolph et al., 2008) and other paracrine or endocrine chemo-attratcants are among other factors that play a vital role in cancer cell migration.

Cannabinoid receptor-independent modes of action in carcinogenesis

In addition to the effects mediated via the endocannabinoid receptors, endocannabinoids, in particular AEA and CBD, are known to have CB-receptor-independent effects (Begg et al., 2005). AEA, for example, induces both neuroblastoma and lymphoma cell death via vanilloid receptor-mediated mechanisms (Maccarrone et al., 2000), whilst methanandamide (MA) inhibits cancer cell invasion through TIMP-1 degradation, which is mediated via TRPV1 activation (Ramer and Hinz,
Table II The ECS in the female reproductive tract.

<table>
<thead>
<tr>
<th>Organ</th>
<th>ECS</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovary</td>
<td>CB1</td>
<td>Immunostaining shows expression of CB1 in the medulla and cortex, in granulosa cells of primordial, primary, secondary and tertiary follicles, in thecal cells of secondary and tertiary follicles and in corpus luteum and corpus albicans</td>
<td>El-Talatini et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>CB2</td>
<td>Immunostaining shows expression of CB2 in the medulla and cortex, in granulosa cells of primordial, primary, secondary and tertiary follicles, in thecal cells of secondary and tertiary follicles and in corpus luteum and corpus albicans</td>
<td>El-Talatini et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>NAPE-PLD</td>
<td>Expressed in granulosa and thecal cells of the secondary and tertiary follicles, corpus luteum and corpus albicans</td>
<td>El-Talatini et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>FAAH</td>
<td>Expressed in granulosa and thecal cells of the secondary and tertiary follicles, corpus luteum and corpus albicans</td>
<td>El-Talatini et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>AEA</td>
<td>Suggested to be produced from granulosa of growing follicles but not from oocytes</td>
<td>Schuel et al. (2002), El-Talatini et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Δ9-THC</td>
<td>Inhibitory effect on both folliculogenesis and ovulation</td>
<td>Adashi et al. (1983)</td>
</tr>
<tr>
<td>Oviduct</td>
<td>AEA</td>
<td>Higher concentrations in the plasma of women with ectopic pregnancy</td>
<td>Gebeh et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>CB1</td>
<td>Noted in mouse oviductal muscularis at the isthmus region and associated with α1 and β2 adrenergic receptor actions</td>
<td>Wang et al. (2004), Horne et al. (2008), Gebeh et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>CB2</td>
<td>Reduced expression in ectopic pregnancy</td>
<td>Gebeh et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>NAPE-PLD</td>
<td>Expressed throughout the oviduct and unaffected by ectopic pregnancy</td>
<td>Gebeh et al. (2012), Gebeh et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>FAAH</td>
<td>Expressed throughout the oviduct and both activity and expression unaffected by ectopic pregnancy</td>
<td>Gebeh et al. (2012), Gebeh et al. (2013)</td>
</tr>
<tr>
<td>Uterus</td>
<td>AEA</td>
<td>Demonstrated to be produced by the mice, rat and human uterus</td>
<td>Paria et al. (2001), El-Talatini et al. (2010), Fonseca et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>CB1</td>
<td>Noted in mouse oviductal muscularis at the isthmus region and associated with α1 and β2 adrenergic receptor actions</td>
<td>Wang et al. (2004), Horne et al. (2008), Gebeh et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>CB2</td>
<td>Evident in both glands and stoma and reaches peak in late proliferative phase</td>
<td>Taylor et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>NAPE-PLD</td>
<td>Intensively expressed in the early proliferative phase of the menstrual cycle</td>
<td>Taylor et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>FAAH</td>
<td>Glandular expression reaches a peak during menstruation</td>
<td>Taylor et al. (2010)</td>
</tr>
<tr>
<td>Cervix</td>
<td>CB1R</td>
<td>Expressed cervical cancer cell lines (Caski, HeLa and CC299) in mRNA and protein</td>
<td>Contassot et al. (2004), Habayeb et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>CB2R</td>
<td>Expressed cervical cancer cell lines (Caski, HeLa and CC299) in mRNA and protein</td>
<td>Contassot et al. (2004), Habayeb et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>TRPV1</td>
<td>Expressed cervical cancer cell lines (Caski, HeLa and CC299) in mRNA and protein</td>
<td>Contassot et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>FAAH</td>
<td>Immunohistological expression in normal human cervix</td>
<td>Habayeb et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>AEA</td>
<td>Anti-tumour effect in cervical cancer cell line</td>
<td>Contassot et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>TRPV1</td>
<td>Apoptosis involving the ceramide-dependent pathway</td>
<td>Eichele et al. (2009)</td>
</tr>
<tr>
<td>Vagina</td>
<td>CB1</td>
<td>Immunohistological expression in normal human tissue primarily in the epidermal cell</td>
<td>Habayeb et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>FAAH</td>
<td>Immunohistological expression in normal human tissue primarily in the epidermal cell</td>
<td>Habayeb et al. (2004)</td>
</tr>
<tr>
<td>Vulva</td>
<td>CB1</td>
<td>Immunohistological expression in normal human tissue primarily in the epidermal cell</td>
<td>Habayeb et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>FAAH</td>
<td>Immunohistological expression in normal human tissue primarily in the epidermal cell</td>
<td>Habayeb et al. (2004)</td>
</tr>
</tbody>
</table>

Furthermore, inhibition of AEA degradation via inclusion of the FAAH inhibitor (URB597) enhances AEA-mediated cytotoxicity in neuroblastoma cells (Hamtiaux et al., 2011). It is proposed that lipid rafts rich in sphingolipids and cholesterol mediate AEA effects via CB1 signaling (Bari et al., 2005; Scuderi et al., 2011). Indeed, lipid raft stabilization (Jin et al., 2011), ceramide accumulation and recruitment of FAS and FAS ligand into lipid rafts facilitate the anti-proliferative and pro-apoptotic actions of AEA in cholangiocarcinoma (DeMorrow et al., 2007). Cyclooxygenase (COX-2), another important cellular protein in CB-receptor-independent cell death induced by endocannabinoids, metabolizes AA to prostaglandins (PGs), and in neoplastic tissues, elevated levels of both COX-2 and PG have been recorded. Recently, it was shown that AEA-induced cytotoxicity is mediated by the production of pro-apoptotic J-series PGs in tumourigenic keratinocytes that overexpress COX-2 (Van Dross, 2009; Kuc et al., 2012). In addition, AEA stimulates COX-2-dependent cell death in apoptosis-resistant colon cancer cells (Patsos et al., 2010), whilst GPR18 has recently been reported to be involved in the regulation of cytokine production (Wang et al., 2014). CBD, a cannabinoid found in cannabis but with no activity at CB1 or CB2 receptors and thus lacking psychotropic effects has been reported to inhibit glioma and breast tumour growth in vitro and in vivo through the induction of apoptosis and the inhibition of...
Perturbators of the ECS in gynaecological cancers.

<table>
<thead>
<tr>
<th>Cancers</th>
<th>Ligands</th>
<th>Classifications</th>
<th>Anti-cancer effect and putative mechanism of action (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervix</td>
<td>Anandamide</td>
<td>Endocannabinoid</td>
<td>Cell cycle arrest (G0/G1) and death noted in three cell lines (Caski, HeLa and CC299) Contassot et al. (2004) induced by DNA fragmentation; not dependent on CB1/CB2 Induction of apoptosis and cell death via TRPV1 Contassot et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>2-AG</td>
<td>Endocannabinoid</td>
<td>Inhibition of migration Rudolph et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>MethAEA and THC</td>
<td>Eicosanoid (synthetic) and phytocannabinoid</td>
<td>Decrease in cell invasion; time and concentration dependent through expression of TIMP-I Ramer and Hinz (2008)</td>
</tr>
<tr>
<td></td>
<td>Δ-9-THC</td>
<td>Phytocannabinoid</td>
<td>Stimulation of TIMP-I expression Ramer and Hinz (2008)</td>
</tr>
<tr>
<td></td>
<td>R (+) methAEA</td>
<td>Analogue of anandamide</td>
<td>Apoptosis activation via the PPAR-γ- and COX-2-dependent pathways Eichele et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>WIN55,212-2 CBD</td>
<td>Phytocannabinoid</td>
<td>Apoptosis via induction of COX-2 expression and PGs through ceramide-dependent pathways Eichele et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Acylamido anandamide</td>
<td>Analogue of anandamide</td>
<td>Inhibition of migration Rudolph et al. (2008)</td>
</tr>
<tr>
<td>Uterus</td>
<td>2-AG</td>
<td>Endocannabinoid</td>
<td>Up-regulation of TIMP-1; involved in angiogenesis Ramer and Hinz (2008)</td>
</tr>
<tr>
<td></td>
<td>Anandamide</td>
<td>Endocannabinoid</td>
<td>Selective inhibition of cell proliferation Burstein and Salmonsen (2008)</td>
</tr>
<tr>
<td>Ovary</td>
<td>2-AG</td>
<td>Endocannabinoid</td>
<td>Possible imbalance in estrogen/progesterone and increase in CB2, leading to defect in mitochondrial function, inhibition of cell growth, decrease in proliferation and increased cell death Guida et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>LPI</td>
<td>Endogenous ligand</td>
<td>Reduction in cell growth through modulation of mitochondrial function, apoptosis and cell death Guida et al. (2010)</td>
</tr>
</tbody>
</table>

The endocannabinoid system and gynaecological cancer

It is now clear that the ECS is involved in all aspects of female reproduction from oocyte production through to parturition with components of the system having been demonstrated to be present and active throughout the entire adult female reproductive tract (Table II). Impairment or dysregulation of the ECS has been associated with various pathological conditions involving these organs (Table II; Fig. 1).

It is, therefore, not surprising that a dysfunctional ECS might be involved in the development of gynaecological cancers. The main perturbations involved are summarized in Table III.

The endocannabinoid system and endometrial cancer

CB2 expression (by immunohistochemistry) has been shown in endometrial cancer biopsies but is only weakly expressed in adjacent normal endometrial tissue (Guida et al., 2010), and furthermore, immunoblotting has shown that CB2 receptor protein expression is significantly elevated in the endometrial cancer tissues when compared with healthy endometrial tissues (Guida et al., 2010). There are no significant differences between CB1 receptor protein expression in the endometrial carcinoma and healthy endometrial tissues (Guida et al., 2010). Analysis of ligand levels by mass spectrometry has shown significantly higher levels of 2-AG in carcinoma tissues, compared with healthy endometrium. In the same study, elevated levels of AEA and PEA in endometrial carcinoma did not reach statistical significance. Further investigation of the ECS has revealed a selective down-regulation of MAGL but not FAAH in endometrial carcinoma compared with healthy controls (Guida et al., 2010). Another study that examined the levels of AEA in endometrial cancer has shown similar results: high levels of AEA in endometrial carcinoma (Schmid et al., 2002). These findings suggest that different signalling pathways are involved in normal and malignant endometrial gland growth control and/or that non-classical cannabinoid receptors are involved in the aetiopathogenesis of endometrial cancer.

Recent work performed by McHugh et al., using the endometrial cancer cell line HEC-1B, documented that AEA, Δ9-THC and NAGLy all induce cell migration through CB2 and GPR18 receptor activation, an effect that is independent of CB1 receptors but involves MAPK as an intermediate (McHugh et al., 2012). By contrast, a study by Gentilini et al. (2010) using primary human endometrial stromal cells has shown...
demonstrated that cell migration is increased following administration of R1-metAEA via CB1 receptor activation, suggesting that CB1 is the main signalling pathway involved in this migration process. Nevertheless, CB2 receptors might play a vital role in the growth of endometrial cancer, probably through the control of cell survival/death pathways (Guzman et al., 2002). A recent study (Guida et al., 2010) has shown that the complete endogenous pathway for CB2 activation is altered significantly in endometrial adenocarcinoma, which may be one of the underlying factors in the regulation of endometrial cancer. The marked elevation in CB2 receptor expression and 2-AG in endometrial cancer tissues might be due to the underlying imbalance in the estrogen/progesterone ratio, which is crucial for the development of endometrial cancer (Guida et al., 2010). The human endometrial cancer cell line (AN3CA) used to study the possible physiological

Figure 2 Schematic representation of the possible actions of ECS in endometrial cancer. The arrows within shapes indicate the direct of the effect. Cannabinoid receptor (CB2), MAGL and 2-AG.
role of the ECS, when transiently transfected with a plasmid containing the cDNA for CB2, showed a 40% reduction in mitochondrial function when compared with control cells, an effect that was not enhanced by the CB2 receptor agonist, JWH133, but was fully prevented by the CB2 receptor antagonist SR144528. Importantly, the presence of agonist and antagonist was unable to prevent any negative effect of CB2 over-expression on AN3CA cell mitochondrial function. These data, therefore, support a potential role for the CB2 receptor in the control of endometrial cancer cell growth through the modulation of mitochondrial function and apoptosis (Guida et al., 2010). The overexpression of CB2 receptors might, therefore, represent a novel diagnostic and therapeutic target for endometrial cancer by targeting cancer cells without damaging the surrounding normal tissues (McKallip et al., 2002). The ECS, as a whole, may be involved in the pathogenesis of endometrial cancer through various mechanisms, as summarized in Fig. 2.

Figure 3 Schematic representation of ECS actions on cervical cancer. Increased expression of the three membrane receptors, TRPV1, cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2) or binding of ligands Delta-9-tetrahydrocannabinol (∆-9-THC), anandamide (AEA) or methanandamide (MA) results in the indicated events, production of new molecules and decreased cell proliferation, whilst MA via a ceramide-dependent pathway affects both COX-2 and MMP pathways to affect cell proliferation.
The endocannabinoid system and cervical cancer

The expression of endocannabinoid receptors (CB1, CB2) and the endovanilloid receptor (TRPV1) in different cervical cancer cell lines (Caski, HeLa and CC299) has been described using RT-PCR and Western blot analyses (Contassot et al., 2004). RT-PCR analysis has revealed strong evidence for CB1, CB2 and TRPV1 transcripts in all analysed cervical cancer biopsies (Contassot et al., 2004).

The effects of AEA in respect of cervical cancer have been investigated using Caski, HeLa and CC299 cells. These three cell lines demonstrated similar dose-dependent sensitivities to AEA resulting in significant cell cycle arrest and cell death (Contassot et al., 2004). AEA-induced DNA fragmentation of cervical cancer cells started 24 h after the addition of AEA, with an increasing proportion of cells staying in sub-G0/G1 (cell cycle phase) (Contassot et al., 2004). The AEA-induced death of cervical cancer cells was not mediated through the CB1 and CB2 receptors because selective antagonists of CB1 (SR141716A) and CB2 (SR144528) enhanced the toxic effects of AEA, suggesting that CB1 and CB2 receptors play a protective role against AEA-induced cell death, in marked contrast to other malignancies (Contassot et al., 2004). The role of TRPV1 in the AEA-induced cell death was investigated using the TRPV1-selective antagonist capsazepine (CZ) and in contrast to CB1 and CB2 antagonists, the addition of CZ protected cells against AEA, suggesting that TRPV1 is involved in the mechanism of AEA-induced apoptosis in cervical cancer cell lines (Contassot et al., 2004).

Products such as ethanolamine, glycerol, dopamine, N-acyl amides, N-acyl ethanolamides, N-acyl amino acids, N-acyl dopamine and N-acyl

![Figure 4](https://academic.oup.com/humupd/article-abstract/21/4/517/685435)

Figure 4 Schematic representation of ECS actions on ovarian cancer. Cannabinoid receptor 1 (CB1), cannabinoid receptor 2 (CB2), GPR55 (GPR55), fatty acid amide hydrolase (FAAH), N-acyl-phosphatidylethanolamine phospholipase D (NAPE-PLD), mono-acylglycerol lipase (MAGL), free fatty acid (FFA), lysophosphatidylinositol (LPI), extracellular signal-regulated kinase (ERK) 1/2, intracellular calcium (Ca^{2+}) and cytoplasmic phospholipase A2 (cPLA2). Those parts of the ECS not yet investigated in human ovarian cancer are indicated with a question mark.
GABA, may also play a role in the proliferation of cervical cancer cell lines. A series of dopamine—fatty acid analogues such as palmitoyl dopamine, arachidonoyl dopamine, oleoyl dopamine and γ-linolenoyl dopamine have been shown to significantly inhibit HeLa cell proliferation (Burstein and Salmonsen, 2008).

The role of COX-2 in apoptosis caused by the FAAH-resistant endo-cannabinoid analogue MA has been investigated in HeLa and C33A cervical carcinoma cells (Eichele et al., 2009). MA induced COX-2 expression and subsequent PG synthesis in HeLa cells. Such cells were less sensitive to MA-induced apoptosis when COX-2 was suppressed by a selective COX-2 inhibitor (NS-398) or siRNA knock-down of COX-2 expression. It has also been demonstrated that MA-induced COX-2 expression and apoptosis are not mediated through either CB receptors or TRPV1 receptors but instead via a mechanism involving a ceramide-dependent pathway (Eichele et al., 2009), which mediates apoptosis in glioma cells (Hinz et al., 2004). Inhibition of MA-induced apoptosis was also evident by siRNA targeting of lipocalin-type PGD synthase (L-PGDS) or PPAR γ (Eichele et al., 2009).

Furthermore, MA and Δ-9-THC decrease cervical cancer cell invasion (HeLa C33A) in a time- and concentration-dependent manner associated with an increased expression of TIMP-1 (Ramer and Hinz, 2008). Pre-treatment of cervical cancer cell lines with CB1 or CB2 antagonists, with inhibitors of MAPKs and with an antagonist to TRPV1 resulted in the reversal of TIMP-1 expression and suppression of cell invasion. The knock-down effect of cannabinoid-induced TIMP-1 expression through siRNA reverses cannabinoid elicited a decrease in cervical cancer (HeLaC33A) cell invasion (Ramer and Hinz, 2008).

The actions of the ECS on cervical cancer development are represented schematically in Fig. 3.

The endocannabinoid system and ovarian cancer

Immunohistochemical investigations of normal ovarian tissues for CB1, CB2, FAAH and NAPE-PLD have revealed a widespread pattern of immunostaining in the ovarian cortex and medulla (Table II; El-Talatini et al., 2009). Functional proteomic analysis of ovarian (aggressive [SKOV3] and non-aggressive ovarian cancers [OVCAR3]) data has demonstrated that aggressive cancer cells display highly elevated monoacylglycerol hydrolytic activity and most, if not all, of this activity originates from the MAGL enzyme (Nomura et al., 2010), which degrades 2-AG (C20:4 MAG). MAGL and its FFA products were found to be elevated in aggressive ovarian cancer cell lines, as well as in high-grade primary human ovarian tumours. These data suggest that the MAGL-FFA pathway regulates a fatty acid network enriched in oncogenic signalling lipids that promote cell migration, invasion, survival and in vivo tumour growth. The overexpression of MAGL in non-aggressive cancer cells increases their pathogenicity, and this effect is reversed by MAGL inhibitor (Nomura et al., 2010).

The orphan GPCR 55 (GPR 55) has also been investigated in ovarian cancer cell lines. Western blot analysis revealed an abundant GPR55 expression in the ovarian cancer cell lines OVCAR3 and A2780 (Pineiro et al., 2011). Furthermore, a quantitative reverse transcriptase PCR investigation revealed the expression of GPR55 mRNA in OVCAR3 cells (Pineiro et al., 2011). GPR55 mediates the effects of the endogenous ligand LPI in ovarian cancer cells, where LPI activates Akt and increases intracellular Ca2+ levels and extracellular signal-regulated kinase (ERK) 1/2 expression. Moreover, its down-regulation using siRNA and pharmacological blockade strongly inhibits OVCAR3 cell proliferation (Pineiro et al., 2011). It is, therefore, possible to speculate that this anti-proliferative effect is attributable to the concomitant reduction of cytosolic phospholipase A2 (cPLA2), which is responsible for the synthesis of LPI and ATP binding cassette transporter ABCC1, thus decreasing the levels of LPI (Pineiro et al., 2011).

The actions of ECS on the ovarian cancer cell are summarized in Fig. 4.

Conclusion

Currently available data suggest that the ECS may be targeted to restrain the development and progression of gynaecological cancers. The system exerts a variety of interesting effects that are dependent on the cell type and/or malignancy. The ECS is implicated in cancer cell proliferation, angiogenesis, metastasis and apoptosis. The evidence suggests that an imbalance in endocannabinoid homeostasis may promote cancer development, proliferation and migration; therefore, the ECS is an attractive target for pharmacological intervention in the fight against cancer. The ECS is complex, involving different signalling pathways including activities mediated via CB1, CB2, TRPV1 and GPR55 receptors and other as yet uncharacterized receptors, and also through receptor-independent pathways. These complex signalling pathway interactions, both in normal and cancer tissues, offer a great challenge to researchers. However, the need for a better understanding of the role of the ECS in gynaecological cancer means a need for further research to unravel the complex interplay between the ECS, its signalling pathways and carcinogenesis.

Authors’ roles

All authors contributed to the design, writing and inception of the manuscript.

Funding

There was no specific funding for the work that constitutes this article.

Conflict of interest

None declared.

References

Bosier B, Muccioli GG, Hermans E, Lambert DM. Functionally selective cannabinoid receptors.

Buckley NE, McCoy KL, Mezey E, Bonner T, Zimmer A, Felder CC, Glass M, Zimmer A. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor. Eur J Pharmacol 2000;396:141–149.

Gomes FV, Del Bel EA, Guimaraes FS. Cannabinoids attenuates catalepsy induced by distinct pharmacological mechanisms via S-HT1A receptor activation in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:43–47.

Gomes FV, Del Bel EA, Guimaraes FS. Cannabinoids attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptor activation in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:43–47.

McHugh D, Hu SS, Rimmerman N, Jukat A, Vogel Z, Walker JM, Bradshaw HB. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative normal cannabinoid receptor. BMC Neurosci 2010;11:44.

McHugh D, Page J, Dunn E, Bradshaw HB. Delta(9)-tetrahydrocannabinol and N-arachidonoyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br J Pharmacol 2012;165:2414–2424.

Taylor AH, Abbas MS, Habbia MA, Konje JC. Histomorphometric evaluation of cannabinoid receptor and anandamide modulating enzyme expression in the...

Van Dross RT. Metabolism of anandamide by COX-2 is necessary for endocannabinoid-induced cell death in tumorigenic keratinocytes. Mol Carcinog 2009; 48:724–732.

