Loading

DRUG TESTING - OTHER & Cannabis studies completed

Science and Research

Comparison of meconium and neonatal hair analysis for detection of gestational exposure to drugs of abuse

 
Arch Dis Child Fetal Neonatal Ed. 2003 March; 88(2): F98–F100.
doi: 10.1136/fn.88.2.F98.
PMCID: PMC1721515
Comparison of meconium and neonatal hair analysis for detection of gestational exposure to drugs of abuse
B Bar-Oz, J Klein, T Karaskov, and G Koren
Abstract
Background: Meconium and hair are two biological markers of in utero exposure to illicit drugs.
Objective: To compare the sensitivity of the two tests for different drugs.
Setting: Motherisk laboratory which tests in utero drug exposure in Toronto.
Methods: Cocaine, benzoylecgonine, opiates, cannabis, benzodiazepines, methadone, and barbiturates were measured in pairs of hair and meconium samples from the same neonates.
Results: Meconium was marginally more sensitive than neonatal hair for detection of cocaine and cannabis, possibly because it may detect second trimester exposure whereas hair grows only during the third trimester of pregnancy. There was a significant correlation between hair and meconium concentrations of cocaine, cannabis, and opiates.
Conclusion: In cases of clinical suspicion and a negative neonatal urine test, both meconium and hair are effective biological markers of in utero illicit drug exposure. Meconium may be more sensitive, but neonatal hair is available for three months whereas meconium is available for only one or two days. In contrast, the use of meconium, being a discarded material, is more acceptable to some parents than hair testing, which entails cutting scalp hair from the newborn.
Full Text
The Full Text of this article is available as a PDF (82K).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • Jekel JF, Allen DF, Podlewski H, Clarke N, Dean-Patterson S, Cartwright P. Epidemic free-base cocaine abuse. Case study from the Bahamas. Lancet. 1986 Mar 1;1(8479):459–462. [PubMed]
  • Volpe JJ. Effect of cocaine use on the fetus. N Engl J Med. 1992 Aug 6;327(6):399–407. [PubMed]
  • Gillogley KM, Evans AT, Hansen RL, Samuels SJ, Batra KK. The perinatal impact of cocaine, amphetamine, and opiate use detected by universal intrapartum screening. Am J Obstet Gynecol. 1990 Nov;163(5 Pt 1):1535–1542. [PubMed]
  • Chasnoff IJ, Griffith DR. Cocaine: clinical studies of pregnancy and the newborn. Ann N Y Acad Sci. 1989;562:260–266. [PubMed]
  • Addis A, Moretti ME, Ahmed Syed F, Einarson TR, Koren G. Fetal effects of cocaine: an updated meta-analysis. Reprod Toxicol. 2001 Jul–Aug;15(4):341–369. [PubMed]
  • Chasnoff IJ, Bussey ME, Savich R, Stack CM. Perinatal cerebral infarction and maternal cocaine use. J Pediatr. 1986 Mar;108(3):456–459. [PubMed]
  • Lopez SL, Taeusch HW, Findlay RD, Walther FJ. Time of onset of necrotizing enterocolitis in newborn infants with known prenatal cocaine exposure. Clin Pediatr (Phila) 1995 Aug;34(8):424–429. [PubMed]
  • Frank DA, Augustyn M, Knight WG, Pell T, Zuckerman B. Growth, development, and behavior in early childhood following prenatal cocaine exposure: a systematic review. JAMA. 2001 Mar 28;285(12):1613–1625. [PMC free article] [PubMed]
  • Frank Deborah A, Augustyn Marilyn, Knight Wanda Grant, Pell Tripler, Zuckerman Barry. Growth, Development, and Behavior in Early Childhood Following Prenatal Cocaine Exposure: A Systematic Review. JAMA. 2008 May 2;285(12):1613–1625. [PMC free article] [PubMed]
  • Franck L, Vilardi J. Assessment and management of opioid withdrawal in ill neonates. Neonatal Netw. 1995 Mar;14(2):39–48. [PubMed]
  • Dixon SD. Effects of transplacental exposure to cocaine and methamphetamine on the neonate. West J Med. 1989 Apr;150(4):436–442. [PMC free article] [PubMed]
  • Dixon SD. Effects of transplacental exposure to cocaine and methamphetamine on the neonate. West J Med. 1989 Apr;150(4):436–442. [PMC free article] [PubMed]
  • Birchfield M, Scully J, Handler A. Perinatal screening for illicit drugs: policies in hospitals in a large metropolitan area. J Perinatol. 1995 May–Jun;15(3):208–214. [PubMed]
  • Forman R, Klein J, Meta D, Barks J, Greenwald M, Koren G. Maternal and neonatal characteristics following exposure to cocaine in Toronto. Reprod Toxicol. 1993 Nov–Dec;7(6):619–622. [PubMed]
  • Ostrea EM, Jr, Knapp DK, Tannenbaum L, Ostrea AR, Romero A, Salari V, Ager J. Estimates of illicit drug use during pregnancy by maternal interview, hair analysis, and meconium analysis. J Pediatr. 2001 Mar;138(3):344–348. [PubMed]
  • Cirimele V, Kintz P, Mangin P. Testing human hair for cannabis. Forensic Sci Int. 1995 Jan 5;70(1-3):175–182. [PubMed]
  • Graham K, Koren G, Klein J, Schneiderman J, Greenwald M. Determination of gestational cocaine exposure by hair analysis. JAMA. 1989 Dec 15;262(23):3328–3330. [PubMed]
  • Klein J, Karaskov T, Koren G. Clinical applications of hair testing for drugs of abuse--the Canadian experience. Forensic Sci Int. 2000 Jan 10;107(1-3):281–288. [PubMed]
  • Koren G, Klein J, Forman R, Graham K. Hair analysis of cocaine: differentiation between systemic exposure and external contamination. J Clin Pharmacol. 1992 Jul;32(7):671–675. [PubMed]
  • Chiriboga CA, Bateman DA, Brust JC, Hauser WA. Neurologic findings in neonates with intrauterine cocaine exposure. Pediatr Neurol. 1993 Mar–Apr;9(2):115–119. [PubMed]
  • Chiriboga CA, Brust JC, Bateman D, Hauser WA. Dose-response effect of fetal cocaine exposure on newborn neurologic function. Pediatrics. 1999 Jan;103(1):79–85. [PubMed]
  • Dolovich LR, Addis A, Vaillancourt JM, Power JD, Koren G, Einarson TR. Benzodiazepine use in pregnancy and major malformations or oral cleft: meta-analysis of cohort and case-control studies. BMJ. 1998 Sep 26;317(7162):839–843. [PMC free article] [PubMed]
  • Dolovich Lisa R, Addis Antonio, Vaillancourt J M Régis, Power J D Barry, Koren Gideon, Einarson Thomas R. Benzodiazepine use in pregnancy and major malformations or oral cleft: meta-analysis of cohort and case-control studies. BMJ. 1998 Sep 26;317(7162):839–843. [PMC free article] [PubMed]
  • Ursitti F, Klein J, Sellers E, Koren G. Use of hair analysis for confirmation of self-reported cocaine use in users with negative urine tests. J Toxicol Clin Toxicol. 2001;39(4):361–366. [PubMed]
  • Delaney-Black V, Covington C, Ostrea E, Jr, Romero A, Baker D, Tagle MT, Nordstrom-Klee B, Silvestre MA, Angelilli ML, Hack C, Long J. Prenatal cocaine and neonatal outcome: evaluation of dose-response relationship. Pediatrics. 1996 Oct;98(4 Pt 1):735–740. [PubMed]

Excretion of Δ9-tetrahydrocannabinol in sweat

  • Marilyn A. Huestis

      Affiliations

    • Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
    • Corresponding author. Fax: +1 410 550 2468.
    email address
  • ,
  • Karl B. Scheidweiler

      Affiliations

    • Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
  • ,
  • Takeshi Saito

      Affiliations

    • Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
    • Tokai University School of Medicine, Kanagawa, Japan
  • ,
  • Neil Fortner

      Affiliations

    • ChoicePoint, Inc., Alpharetta, GA
  • ,
  • Tsadik Abraham

      Affiliations

    • Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
  • ,
  • Richard A. Gustafson

      Affiliations

    • US Navy, Navy Drug Screening Laboratory, Jacksonville, FL, USA
  • ,
  • Michael L. Smith

  • Received 24 January 2007; received in revised form 27 March 2007; accepted 1 April 2007. published online 10 May 2007

Abstract 

Sweat testing is a noninvasive technique for monitoring drug exposure over a 7-day period in treatment, criminal justice, and employment settings. We evaluated Δ9-tetrahydrocannabinol (THC) excretion in 11 daily cannabis users after cessation of drug use. PharmChek® sweat patches worn for 7 days were analyzed for THC by gas chromatography–mass spectrometry (GC/MS). The limit of quantification (LOQ) for the method was 0.4ng THC/patch. Sweat patches worn the first week of continuously monitored abstinence had THC above the United States Substance Abuse Mental Health Services Administration's proposed cutoff concentration for federal workplace testing of 1ng THC/patch. Mean±S.E.M. THC concentrations were 3.85±0.86ng THC/patch. Eight of 11 subjects had negative patches the second week and one produced THC positive patches for 4 weeks of monitored abstinence. We also tested daily and weekly sweat patches from seven subjects who were administered oral doses of up to 14.8mg THC/day for five consecutive days. In this oral THC administration study, no daily or weekly patches had THC above the LOQ; concurrent plasma THC concentrations were all less than 6.1μg/L. In conclusion, using proposed federal cutoff concentrations, most daily cannabis users will have a positive sweat patch in the first week after ceasing drug use and a negative patch after subsequent weeks, although patches may remain positive for 4 weeks or more. Oral ingestion of up to 14.8mg THC daily does not produce a THC positive sweat patch test...read full article

 

Top      Home